skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paul, Sanchita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neutral three‐coordinate iron alkylidenes of the form PN−Fe=CHR have been proposed as viable candidates for alkene metathesis. Indeed, during the final stages of preparing this current study, a separate report disclosed that dearomatized PN−Fe‐alkyl complexes are active precatalysts for ring‐opening metathesis polymerization (ROMP) of norbornene implicating PN−Fe=CHR species as possible intermediates. In yet another separate report, we prepared Zn analogues of PN−Fe‐alkyl complexes and herein provide an account for the synthesis, characterization, and reactivity of some new iron complexes with the sametBu substituted PN platform. 
    more » « less
  2. Abstract This work details the synthesis, characterization, and catalytic activity of reactive low‐coordinate organozinc complexes. The complexes activate hydrogen and they appear to be more active in hydrogenation of ketones and imines than their tridentate pincer analogs. This is thought, in part, to be due to the lack of trailing third phosphorus arm present in previous work. DFT computations reveal a sigma‐bond metathesis mechanism is comparable to an alternative aromatization/dearomatization metal‐ligand cooperative mechanism. 
    more » « less